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Abstract 
 
 

Some efforts to streamline and accelerate product-level life cycle assessments (LCA) 
with regards to greenhouse gas emissions (product carbon footprinting, PCF) rely 
on first grouping products into categories and then building simplified LCA models 
around emission hotpots. This requires, among others, fundamental understanding 
of how much such hotspots can vary from product to product, across brands, and 
country of origin. Here, we apply a novel fast LCA methodology to first quantify 
and then analyze PCFs of 3,335 stock keeping units (SKUs) of a global food snack 
and beverage company. We find that the often cited dominance of the supply 
chain's contribution to the total footprint is valid for large portfolios of products in 
aggregate (75%-93% contribution). However, this does not remain universally valid 
when analyzing individual brands and SKUs: At SKU level, the metric varies widely, 
from 9% (smallest supply chain contribution) to nearly 100%. For 254 of the 3,335 
SKUs, less than 50% of overall emissions originate in the supply chain. SKU-level 
carbon intensity (PCF divided by net SKU weight) varies widely as well, in our 
sample from 0.1 to 70. It also varies within brands, indicating a design challenge for 
stream-lined models. SKU-average carbon intensityvaries between ~0.4 (beverages) 
to ~4 (some baked snacks). The portfolio-level footprint (3,335 SKUs in our 
sample) is highly concentrated: 4% of SKUs contribute 50% of annual GHG; 2.5% 
of the 6,040 acquired individual raw materials contribute 40% of annual GHG from 
all raw materials, the majority of the 2.5% being agricultural ingredients. 
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Introduction 
 

Product life cycle assessment (LCA)(SAIC, 2006)has come a long way, from 

one of its earliest uses in a globally operating beverage company (to compare the 

relative environmental impacts of glass versus plastic packaging(Hunt et al., 1998)) to 

being the methodological backbone of the current Product Environmental Footprint 

(PEF) initiative of the European Commission. Specifically in product carbon 

footprinting (PCF), a sub-discipline of LCA, some of LCA's challenges (Reap et al., 

2008b, a) have been overcome or at least alleviated, partially through the emergence 

of more detailed footprinting standards (Draucker et al., 2011) and further by 

improved awareness of and approaches to data quality issues (Lloyd and Ries, 2007, 

Ciroth and Meinrenken, 2014). In business applications, concepts of LCA and 

Industrial Ecology more generally have been shown to lead to competitive advantages 

(Hoffman et al., 2014). Respective case studies, e.g., (Meinrenken et al., 2014), are 

consistent with an apparent correlation between sustainability efforts and stock 

performance amongst S&P 500 companies (Carbon Disclosure Project, 2014). While 

strictly speaking this is a correlation without proof of causation, companies may infer 

with near certainty that efforts towards sustainability at least do not seem to be 

detrimental to more traditional measures of business performance. 

 

For many companies, however, the majority of their environmental impacts 

are believed to originate in their supply chain (i.e., up- and downstream of their own 

operations); and here insights from methodologies such as LCA have proven 

challenging (O'Rourke, 2014). Whereas companies almost routinely track energy 

consumptions of their own operations, and quantify associated greenhouse gas 

(GHG) emissions referred to as scope 1 and 2, methodologies to analyze the 

hundreds and thousands of products and supply chains that make up each company's 

footprint are typically not yet at a company's disposal. This is because traditional LCA 

is usually considered too complex to be applied at such scale (Meinrenken et al., 

2012b). 
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To address this, a number of recent studies focus on streamlining the PCF 

process. These focus either on simplifying the methodology itself and thus requiring 

fewer data entries and analytical steps, e.g., (Graedel, 1998, Hunt, Boguski et al., 1998, 

Hochschorner and Finnveden, 2003, Verghese et al., 2010, Arena et al., 2013). Or 

they focus on exploiting existing company IT systems and data science methodologies 

to carry out the LCA to the same level of detail, however with less time and personnel 

requirements(Meinrenken et al., 2013). 

 

One recurring set of questions in such work are around "hotspots", i.e. the 

source for the majority of GHG contributions, and whether these can be generalized 

across products, product types, or regions. If hotspots can indeed be generalized, this 

could aid in streamlining LCA models for certain product categories(Ingwersen and 

Stevenson, 2012), for example, by focusing most of the LCA effort on pre-

determined parts of a product type's life cycle while only approximating or even 

disregarding others. Likewise, it would facilitate quantifying the life cycle carbon 

reductions from introducing supply chain optimizations (Meinrenken et al., 2014) 

such as using low-carbon fuels (Lackner et al., 2010, Meinrenken and Lackner, 2014, 

2015, Meinrenken, 2015). For example, are hotspots usually or always up- or 

downstream of a company's own operations; for packaged consumer goods, are 

packaging materials or actual product content the higher contributors; can this vary 

between brands of the same company, across regions, etc.? Such analyses have not yet 

been widely available because typically only a small number of products of any 

particular company have been analyzed via LCA (typically 10-20 (Cremmins, 2014)).  

 

Here, we investigate above questions systematically by applying a recently 

introduced fast PCF approach to a dataset of 3,335 stock keeping units (SKUs) of a 

globally operating packaged consumer goods company that specializes in food snacks 

and beverages. 
 

Materials and Methods 
 

Life Cycle Assessment (LCA) 
 

The goal and scope of the LCA was to first carry out a PCF, according to the 

latest GHG Protocol standard (GHG-Protocol, 2011), for each of the 3,335 SKUs in 

a large scale PCF project carried out for a global packaged consumer goods company 

(food snack and beverage sector). The LCA inventory data is described in detail in 

below section " LCA Inventory Data for Sample Portfolio". 
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All attributable life cycle stages (cradle-to-grave) were included for each SKU. 

PCFs were obtained for the six standard GHGs, with the impact calculation being on 

a 100 year global warming potential (GWP) horizon (expressed as CO2e). The 

ultimate objective was to then analyze these PCFs with regards to the hotspot 

characteristics described in Introduction. 

 

Fast PCF Methodology 

 

As laid out in detail previously, the product carbon footprint of a single SKU i 

is calculated as follows (Meinrenken et al., 2011a, Meinrenken et al., 2011b, 

Meinrenken et al., 2012a, Meinrenken et al., 2012b, Meinrenken, Garvan et al., 2013, 

Meinrenken, Sauerhaft et al., 2014): 

 

 
j k

kjii Dpcf ,, , (

1) 

 

where pcfi denotes the footprint of a single SKU i (amount of CO2e); j the 

particular inventory item for which greenhouse gases (GHG) are specified (e.g., a 

certain packaging material, ingredient, transportation, energy use, etc.); and Di,j,kthe 

value of driverk for this particular inventory item j and product i. The annualized 

carbon footprint of one SKU is thus given as: 

 

 
iii pcfDPCF  0,0, , 

(

2) 

 

where PCFi denotes the annualized footprint, pcfi as above, and Di,0,0 the 

number of individual items produced of SKU i per year. The total annual footprint of 

any portfolio of multiple SKUs is thus: 

 

  
i

ii

i

iPortfolio pcfDPCFPCF 0,0,
, (

3) 

 

where PCFPortfolio denotes the aggregate footprint of a particular set of SKUs 

chosen to be part of a portfolio. For example, these may be all SKUs belonging to a 

certain brand, of a specific product type, or those manufactured in a certain country.  
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Finally, all drivers are screened for their contribution to the aggregated 

uncertainty of PCF and, where necessary, their sources reviewed and updated and 

thus driver uncertainty reduced (Meinrenken, 2013, Ciroth and Meinrenken, 2014). 

 

LCA Inventory Data for Sample Portfolio 

 

The life cycle inventory data was extracted from the company's enterprise 

resource planning (ERP) system (data of year 2011), with facility data (manufacturing 

plant energy and water consumptions) pulled from separate systems and secondary 

data added manually for some Dbi,j,k(Meinrenken, Kaufmann et al., 2012b). The data 

covered 3,335 SKUs (2 were excluded based on outliers in Dbi,0,0), 196 brands, 5 

countries, and spanned the product types food snack (savory and sweet) as well as 

beverage (carbonated and non-carbonated). An overview is shown in Table 1. 

 

While this constitutes a rather large dataset (large number of SKUs), it is not 

comprehensive in that it does not cover every single SKU in each brand, nor does it 

cover all brands in a particular country. The dataset is therefore a sample that does 

not reflect the company's total annual footprint but instead gives a representative 

spread of PCFs across a wide range of SKUs, brands, product types, and countries. 

The dataset is therefore ideal for the goal and scope of this study. 

 

Table 1: Characteristics of 3,335 Stockable Units (SKUs)  
Contained in Sample Portfolio 

 

 

Brazil China Germany Mexico USA Portfolio

Product type(s) Food Beverage Beverage Food Food & Bev.Food & Bev.

Number of brands 28 9 5 46 108 196

Number of SKUs 299 836 92 815 1293 3335

Average annual production per SKU 8,988,760 400,464 216,759 105,048 490,815 1,128,218

Average net weight per SKU [kg] 0.9 11.3 70.0 4.4 30.2 17.6

Number of pack. materials* 301 841 93 820 1301 3356

Number of ingredients* 241 673 74 656 1041 2684

Annual GHG (2011) [MegaTons CO2e] 0.73 1.93 0.11 1.29 8.62 12.68

GHG confidence interval** N/a*** N/a N/a N/a N/a ±13%

*Estimated from total number of materials and SKU breakdown; **one standard deveation; *** confidence intervals for country, brand, or SKU-

level obtainable via fast PCF methodology, however intervals are smaller than GHG variation between SKUs and brands, thus not shown.
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Calculations and Analyses 

 

As described previously (Meinrenken, Kaufmann et al., 2012b), the cradle-to-

grave LCA inventory is organized into 8 different life cycle stages: S1: procurement of 

packaging materials; S2: procurement of ingredients; S3: inbound transportation; S4: 

manufacturing in company's facilities; S5: outbound transportation of finished SKU; 

S6: warehousing and retail; S7: consumer use phase; and S8: end of life. In the analyses 

presented in this work, we refer to S1 and S2 collectively as "raw material acquisition", 

and S3 and S5 through S8 as "other supply chain" (Figure 2). We thus calculate 

Supply chain, the portion of the footprint arising from anywhere in the supply chain (up- 

or down stream of company's facilities) as a portion of the total footprint (Figure 5): 
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Finally, we define carbon intensity (CI) of any footprint as: 
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0,0,
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, 
(

5) 

 

where pcfi denotes the footprint of a single SKU i (as above), Si as above, and 

wi denotes the net weight (i.e., excluding any packaging materials) of that SKU, and 

Dbi,0,0 above. CI can be calculated for any set of SKUs, ranging from a single SKU to 

entire portfolios of SKUs.  

 

Results 

 

Portfolio-Level Analyses 

 

We first observe that the portfolio footprint is highly concentrated, meaning 

that relatively few SKUs contribute the majority of the portfolio's annual GHG. In 

the specific case of our sample portfolio of 3,335 SKUs, only 140 or 4.2% of all 3,335 

SKUs with the largest PCFi contribute 50% of PCFPortfolio.  
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This is shown in Figure 1, which plots the cumulative PCF (vertical axis) as a 

function of the number of SKUs included in the count (horizontal axis), once SKUs 

have been sorted by increasing PCFi. In other words, the company's annual carbon 

footprint across all of its products is highly concentrated in relatively few SKUs. A 

priori, this could be due to either the pcfi being highly unevenly distributed, or the 

annual production numbers Di,0,0 being highly uneven (or both). This is therefore 

investigated further in the subsequent results. 

 

Figure 1: Cumulative Annual GHG Versus Number of Included SKUs 
 

 
Next we investigated whether there are hotspots of annual GHG in certain 

materials rather than others. Similar to the above concentration of the footprint 

arising from relatively few SKUs, many raw materials that the company procures are 

used across many SKUs simultaneously. As a result, when focusing on the footprint 

in stages S1 and S2 alone, the footprint is similarly concentrated, with 40% of GHG 

stemming from just 15 individual materials (or 2.5% of all 6,040 materials used across 

all 3,335 SKUs). This is shown in Table 2 which is sorted by decreasing material 

amount used annually in the portfolio of 3,335 SKUs. 
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Table 2: Contribution of Materials in Supply Chain to Portfolio Footprint 
 

 
 

In combination, the results shown in Figure 1 and Table 2 mean that 

companies can address large portions of their annual footprint by focusing on a small 

portion of their SKUs, and, with respect to their upstream footprint in stages S1 and 

S2 (i.e., material acquisition), on a small number of their raw materials. 

 

 

 

 

 

 

 

 

Rank (by 

material 

amount)

Material

Country 

where 

used in 

SKU

Annual 

GHG 

[Mton 

CO2e]

% of total 

GHG S1+S2 

[cumu-

lative]

1 Raw fruit Type A USA 0.527 4.16%

2 Raw fruit Type B USA 0.581 8.74%

3 Purchased juice USA 0.243 10.65%

4 Fruit pulp USA 0.124 11.63%

5 Beverage base mix USA 3.178 36.69%

6 Sugar China 0.049 37.08%

7 Salmon Mexico 0.014 37.19%

8 Oats USA 0.010 37.27%

9 Fructose syrup China 0.162 38.54%

10 Purified water USA 0.096 39.30%

11 Flavor essence USA 0.006 39.35%

12 Liquid sucrose USA 0.062 39.84%

13 Lemon/lime essense USA 0.016 39.96%

14 Potatoes Brazil 0.011 40.05%

15 Orange essence USA 0.005 40.09%

… … … … …

6040 … … … 100.00%
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Next we sought to characterize how much of the company's total footprint is 

driven by supply-chain-related versus non supply-chain-related stages of the lifecycle. 

This is shown in Figure 2: In every of the 5 countries sampled, non-supply chain 

related GHG emissions (i.e., from the manufacturing stage S4) account for at most 

25% of annual GHG. However, this can change widely from country to country, and 

is strongly correlated with the predominant product type in each country and the 

carbon intensity. For example, PCF in Germany (beverages) has the lowest 

contribution of S4 (6%, carbon intensity (CI) 0.4) whereas PCF in Brazil has the 

highest contribution of S4 (25%, CI 2.0).  

Focusing only on the upstream portion of the supply chain (i.e. raw material 

acquisition), contributions range from 47% (Germany) to 80% (USA) of total annual 

GHG emissions. In summary, when focusing on highly aggregate portfolios such as 

entire countries, we find that supply-chain-related materials and processes such as 

transportation do dominate the overall footprint. However, the degree of this 

dominance varies from country to country. It is most likely mainly driven by the 

product type in question and, to a lesser extent, by its country of origin. 

 

Figure 2: Breakdown of Annual GHG to Life Cycle Stages 
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SKU-Level Analyses 
 

Above results are at the level of portfolios (i.e., PCF rather than pcf) and are 

therefore affected by the annual SKU productions Di,0,0 of each SKU i. They are 

therefore less insightful for a company if it wants to understand GHG hotspots in 

individual SKUs, be this in order to streamline the LCA process of such SKUs, in 

order to identify GHG reduction opportunities, or both. In subsequent analyses, we 

therefore strip out the effect of annual SKU productions and focus on the pcf of single 

SKUs. 

 

 

First, we find that the country-level variation in carbon intensity (CI) found 

above (ranging from 0.4 to 4; or factor 10) masks a much broader range of possible 

CI of individual SKUs. SKU by SKU, CI can range from as low as 0.1 to as high as 70 

(factor 700). This is shown in Figure 3. 

 

 
Figure 3: Range and Distribution of SKU-Level Carbon Intensity in Portfolio 

 

 
 

We then sought to investigate the underlying reasons and possible trends for 

the wide range of SKU-level CIs. We find a strong correlation between CI of a SKU 

on one hand and Supply chainon the other (i.e., the footprint portion that originates from 

the supply chain, Methods). This is shown in Figure 4: Across the 3,335 SKUs, Supply chain 

ranges from a minimum of 9% to nearly 100%, and as a general trend, larger Supply chain 

correlates with larger CI. Also shown in Figure 4 is the fact that SKUs whose supply 
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chain contributes at most half to the total footprint pcf may not be the norm, but are 

by no means rare exceptions: 254 or ~8% of all SKUs have such untypically small 

Supply chain (Figure 4, right vertical axis, plots cumulative number of SKUs as function of 

ascending Supply chain, horizontal axis). 

 

 

 

 

 

 

 

 

Figure 4: Distribution of SKUs Versus Supply Chain and  
Impact on Carbon Intensity (CI) 

 

 
 

While Figure 4shows a general trend between SKUs' CI and Supply chain, it also 

shows that this trend is not uniform. Rather, there appear to be subgroups of SKUs in 

the portfolio, each with their own distinct dependence between CI and Supply chain.  

 

Our final results are therefore devoted to elucidating the SKU characteristics 

that underly some of this variation in CI and Supply chain dependence. Figure 5 shows 
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excerpts of the 3,335 SKUs shown in Figure 4, with each SKU data point further 

identified by country and brand (brands are anonymized to protect company's data 

confidentiality). We find that each country, and within each country each brand, has 

its own distinct quantitative relationship between between CI and Supply chain. 

Furthermore, countries and brands differ strongly as to the overall range of CI and 

Supply chain. For example, SKUs of a beverage brand in China have CIs from 0.2 to 2.0 

with Supply chain ranging from ~90% to ~98%. In contrast, Supply chain of SKU's of two 

particular food brands in Brazil are all below 87%, with one brand staying entirely 

above 82% while the other brand ranging as low as 72%. However, the CI of the 

majority of the SKUs of those two brands in Brazil are actually higher than those of 

the China sample.  

Further analyses showed that the underlying reason for this variation is not 

just the product type: Food snacks can be expected to have higher CI than beverages, 

simply because of their typically more resource intensive formulation and 

manufacturing. But, to a lesser extent, the country affects the dependence between CI 

and Supply chain as well (SKU-level results not shown, aggregate results shown in Table 

2). 

 

Figure 5: Variation of Supply Chain and Carbon Intensity (CI)  
within and across Brands 
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Discussion 
 
Summary and Conclusions 

 

We present a first of its kind dataset of PCFs for 3,335 SKUs which were 

calculated using a novel footprinting methodology, using an analytic approach to 

uncertainty propagation (Meinrenken, Ramesh et al., 2011b, Meinrenken, Kaufmann 

et al., 2012b, Meinrenken, 2013) rather than Monte Carlo approach (Meinrenken et 

al., 1997, Zheng and Meinrenken, 2013, Zheng et al., 2014b, a, Zheng et al., 2015). 

Furthermore, each SKU's footprint captures SKU interactions (Macheret et al., 1995, 

Macheret et al., 1996, Gillespie et al., 1997) that arise from byproducts and/or 

promotional SKUs (which comprise multiple other SKUs in the portfolio). 

 

When focusing on aggregate, annual GHG across SKU portfolios, we find 

that previously published observations, for example the importance of the supply 

chain, e.g. (O'Rourke, 2014), and the agricultural sector, are confirmed: Across the 

entire sample of 3,335 SKUs, material acquisition comprise 71% of the total 

footprint, followed by 19% from other supply chain activities and 10% from 

manufacturing in company's facilities. When broken down to countries and product 

sectors, footprints from the supply chain (i.e., everything except company's own 

manufacturing) can range from 75% to 93%. Raw material acquisition always remains 

the single highest contributing stage in this breakdown. Still focusing on aggregate, 

annual GHG, a minority of SKUs and a minority of acquired materials comprise the 

majority of the footprint, leading to a lumpy portfolio with respect to GHG. 

 

This picture changes when drilling down further to the footprint of individual 

brands and single SKUs: Here, dominance of raw material acquisition is not generally 

true anymore. Rather, for 254 of the 3,335 SKUs, GHG emissions from the supply 

chain contribute less than 50% to the total footprint. As a general trend, higher 

contribution from the supply chain drives higher overall carbon intensity of a SKU. 

However, the nature of this relationship varies across countries and brands. 

 

In particular, the carbon intensity varies strongly even for different SKUs of 

the same brand, indicating that it may be challenging (albeit not impossible) to adopt 

simplified, stream-lined LCA models to categories of products (because they may vary 

by SKU (e.g., packaging type) and/or country of origin). 
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Limitations and Future Improvement of Analytic Framework 

 

First, the observed correlation between a SKU's carbon intensity (CI) on one 

hand and its footprint contribution from the supply chain on the other is likely 

further enhanced by the fact that our current model quantifies the footprint of 

company's manufacturing, for most SKUs, as directly proportional to a SKU's net 

weight (with a slope varying by country and product type). In the future, having more 

SKU-specific manufacturing resource data available, this will lead to a less systematic 

correlation.  

However, the general trend will most likely remain, given that the range of 

carbon intensities (0.1 to 70 at SKU level) is most likely much larger than the variation 

in manufacturing resource consumption per net weight. 

 

Second, the degree of concentration of the company's total footprint onto 

only a few SKUs and acquired raw materials is naturally specific to this company's 

specific SKU and brand structure as well as the specific countries and brands 

contained in the sample dataset. However, the dataset of 3,335 SKUs was so broad 

and diverse, that it must be considered highly likely that other global food and 

beverage companies of the larger packaged consumer goods sector exhibit similarly 

lumpy footprint patterns. 

 

Finally, the predictive algorithm employed to estimate GHG emission factors 

(EF) for many materials (Methods) could be improved. When employed across entire 

portfolios, its accuracy is sufficient to demonstrate the large variability of hotspots 

across brands and SKUs, as shown in this work. However, pinpointing the exact 

hotspots in specific SKUs would require more scrutinized EFs. 
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